
Computer Writing and Research Lab

White Paper Series: #071105-1

Drupal Accessibility Modifications at the CWRL

Will Martin
wdmartin@mail.utexas.edu

The University of Texas at Austin

Date: 31 Oct. 2007

Keywords: Accessibility, Drupal

Abstract:
This document gives a technical overview of how the CWRL has
modified Drupal (a content management system) to make it more
accessible to users with disabilities.

Introduction

Over the summer of 2007, I was hired to work on the accessibility of
the web sites maintained by the Computer Writing and Research Lab
(CWRL), a research unit within the Department of Rhetoric and
Writing (DRW) at the University of Texas in Austin. This article
documents the modifications I have made during that time.

Background
The CWRL aims to support and create ways of teaching writing
classes in computer-equipped classrooms. Among other things,
instructors teaching in CWRL classrooms are required to create web
sites for their courses. In past the lab attempted to teach HTML and
CSS to all instructors so that they could create and maintain static
sites for their classes; but in the long run, this approach proved
unsustainable. The fairly rapid turnover of instructors (about 50% per
year) meant that each fall the CWRL would need to spend significant
amounts of time and effort teaching HTML to users of widely
varying technical ability.

To remedy this system, the CWRL eventually began using a content-
management system, Drupal, to provide course web sites for
instructors. The Drupal installation here is set up in a multi-site
configuration, so that all the sites are running from one individual
installation of Drupal.

The CWRL is part of a publicly-funded institution, the University of
Texas, and therefore falls under the requirements of Section 508 of

the Rehabilitation Act of 1973, as amended in 1998. Section 508
requires that web sites be made accessible to users with various
disabilities, especially visual impairments. At the beginning of the
summer, the CWRL was not fully in compliance with the Section 508
requirements.

Beyond our legal obligations, we at the CWRL feel a moral obligation
to make our web sites accessible to as many people as possible. We
therefore determined to meet not only the Section 508 requirements,
but also try for compliance with the Web Content Accessibility
Guidelines (WCAG). We chose to aim first for WCAG 1.0
compliance, and then move on to WCAG 2.0 compliance.

As of this writing, the CWRL is still using Drupal 4.7 rather than the
newer 5.1, due to problems with flexinode in the newer version.

Identifying accessibility problems with Drupal
The scope of the summer project focused solidly on Drupal itself, as
distinguished from the content hosted within the Drupal sites. The
accessibility of the content is the responsibility of the individual staff
members, including teachers, who create the content. As long as the
Drupal framework generates accessible pages, any content issues can
be remedied on a case-by-case basis.

The university runs accessibility scans using a program called
WebXM. This program was used to identify recurring problems in
Drupal-generated code. Between WebXM and the experience of the
staff, we identified a number of problems:

• The “Event” module (for tracking upcoming events via
calendar) routinely generated horribly malformed tables
which make no sense whatsoever in screen readers.

• The “Flexinode” module improperly used <label> elements
for visual formatting, causing problems in screen readers.
(For example, the screen reader FireVox does not read label
elements which are not associated with form elements at all.)

• Many modules and some of Drupal’s core code generate
tables which do not have summary attributes specified. (This
problem was fixed, except in administrative pages which are
not available to the general public)

• In many cases, the themes used separating characters such as
a vertical bracket “|” or right angle-quote “»” between items
in lists of links. Screen readers read these characters out loud,
which is terribly annoying. These have been replaced with
CSS equivalents to satisfy both sighted and visually impaired
users.

In addition to correcting accessibility problems, we also added some
new accessibility features to the Drupal themes we maintain.

• In addition to having “skip to main content” links, our
themes now have “skip to header”, “skip to left column”,
“skip to right column”, and “skip to footer”. Each of these
links is equipped with an access key so that it can be triggered
at any time. The header, main content, and footer links are
always present; the left and right column links are only
present when a corresponding column appears in the web
page.

• The link targets embedded in the document now contain
identifying text which is read by screen readers, e.g. “Now
reading the header,” or “Now reading the left column”.

• We added access keys to some other standard links which
appear on all pages.

• We created a new theme, “Accessibility”, which contains
additional enhancements. This theme can be activated for any
site by any user with an account. Sadly, it is not technically
feasible at this time to make this theme available to
anonymous users.

Assumptions I’ve made in writing this document
I’ve made a number of assumptions in reading this document. First, I
assume that you, the reader, have a basic working knowledge of
HTML and CSS, which is utterly essential to making any kind of
sense out of the following discussion. I have also assumed that you
are reasonably familiar with the basics of PHP programming. If you
meet those requirements, then you should be able to follow the
discussion fairly easily.

I have also made assumptions about the technical environment. I
assume:

1. That you’re using *nix operating system such as Unix, Solaris,
FreeBSD, or any variant of Linux;

2. That you’re using Drupal, which itself requires:
a. A working installation of PHP
b. A working database server
c. A working web server
d. An internet connection and appropriate web browser

3. That you have multiple Drupal themes installed;
4. That you’re probably running multiple web sites off of one

installation of Drupal;
5. That all of your themes are standardized on an XHTML 1.0

transitional doctype (or higher).

6. If any of these assumptions do not apply, you’ll need to adapt
anything you find here to your environment, which can be
easy or simple depending on all kinds of factors.

Document Conventions
I have adopted the following conventions:

File name
example_file.php

Folder name
themes/example_folder

HTML code block

<element attribute="value">Human readable text</element>

PHP variable
$variable

PHP function
example_function()

PHP code block

<?php

“// This is a comment”

$variable = function(‘some data');

?>

Types of modifications

There are two types of modifications I have made to Drupal in the
course of making it more accessible:

• Theme overrides
• Modifications to modules

I will describe each of these in detail.

Theme Overrides

Almost all of the modifications I have made take the form of theme
overrides. In order to understand how these work, you need to know
how Drupal’s theming sub-system works. Note that in the course of

completing this project we removed or ported all themes which were
not written in the PHP Template theming dialect that Drupal uses.
The following discussion will therefore be specific to PHP Template.
Other theming systems also work with Drupal, but they are beyond
the scope of this article.

PHP Template Basics
At the most basic level, a PHP Template theme for Drupal consists
of a collection of files stored in the
themes/name_of_the_theme directory, where
“name_of_the_theme” is just that—the name of the theme. For my
theme Nefertari, the directory is therefore themes/Nefertari.
In any given theme directory, you will find some or all of the
following files:

page.tpl.php
The basic framework of the page as a whole. Technically, this is the
only file required for a new theme.

page-front.tpl.php
An alternative page template which only applies to the front page for
the whole site.

node.tpl.php
Defines the markup of nodes. A “node” in this context means “A
piece of content.” (Pro Drupal Development, p. 83) These are the blog
posts, book pages and forum topics that make up the site’s content.

block.tpl.php
Defines the markup of navigation blocks that sit to the left or right of
the main content. These can also contain other things besides
navigations, such as lists of recent posts, links to blogs, log-in boxes,
and so on. And, technically, you can assign blocks to appear in any
defined region on the page—so you could, say, stick one in the
footer. In practice, it’s rare to see a block anywhere besides the left or
right column.

comment.tpl.php
Defines the markup of comments on blog posts, or responses to
forum topics.

box.tpl.php
Obscure and rarely used. See details in Pro Drupal Development, p. 122.

style.css
Defines the appearance of basically everything.

There are likely to be other files in each theme directory also, such as
image files used by the theme, extra style sheets, javascript files, and
so on. In some themes you may also encounter non-standard
template files like page-admin.tpl.php (more on that below).

Editing template files is fairly simple. They consist of standard
HTML mixed with some very basic PHP. Here’s a basic
page.tpl.php:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
<html lang="en">
 <head>
 <title><?php print $head_title; ?></title>
 <?php print $head; ?>
 </head>
 <body>
 <div id="main_frame">

 <div id="header"><?php print $site_name; ?></div>

 <div id="left_column"><?php print $sidebar_left; ?></div>

 <div id="content">
 <?php print $breadcrumb; ?>

 <?php print $content; ?>
 </div>

 <div id="right_column"><?php print $sidebar_right; ?></div>

 <div id="footer"><?php print $footer_message; ?></div>

 </div>
 </body>
</html>

The values of the PHP variables like $breadcrumb are set by
Drupal. The variables I’ve used in this example are not
comprehensive; there are plenty of other available variables.
Drupal.org has a more complete list of page.tpl.php variables.
See also Chapter 8 of Pro Drupal Development.

How the Drupal Theme System Sets Variables
Let’s look at how Drupal sets the $links variable, which prints
out several links on one line, for example the “Delete”, “Edit”, and
“Reply” links for a given comment. As you might expect, Drupal has
a function which puts together the $links variable. Here is the
default links function, as defined in theme.inc:

/**
 * Return a themed set of links.
 *
 * @param $links
 * An array of links to be themed.
 * @param $delimiter
 * A string used to separate the links.
 * @return
 * A string containing the themed links.
 */
function theme_links($links, $delimiter = ' | ') {
 if (!is_array($links)) {
 return '';
 }
 return implode($delimiter, $links);
}

This takes an array of links ($links), and turns them into a single
line of text with a vertical lines in between each link. These vertical
bars serve as a divider, helping the user’s eye separate the links from
one another. That’s fine for sighted users. For a visually impaired
user, however, the signs don’t make much sense when read aloud.
Suppose you have this code:

delete |
edit |
reply

Screen readers will pronounce the dividers, so that it comes out
sounding like “link: delete, vertical bracket, link: edit, vertical bracket,
link: reply.” A visually impaired user doesn’t really need to hear
“vertical bracket” read out in between each link, particularly not
when the screen reader prefaces each one with the phrase “link.”

Overriding Default Theme Functions
Fortunately, we can override the theme_links() function with
one of our own. It is never called directly; instead, it is called by a
wrapper function called theme(), like this:

$output .= theme('links', $links);

The first argument for theme() specifies what theming function
should be used—in this case, the argument "links" tells it to look for
the _links() function. Any subsequent arguments, like
$links in this example, get passed on to the function that
theme() chooses to use.

The theme() function tests for the existence of three functions
and uses the first one it finds. If it’s looking for the _links() function,
it checks for three possible variants of that function:

1. theme_name_links()
2. theming_engine_links()
3. theme_links()

First, it gets the name of the current theme, checks whether the
theme has a template.php file, and looks in that file for a theme-
specific _links() function. So, for example, if the current theme
is “Nefertari”, it tries to use the function
Nefertari_links() from the file
themes/Nefertari/template.php.

But if there is no such function, it checks to see whether
template.php contains a function called
phptemplate_links(). If so, then it’ll use that function to
theme the links. And lastly, if all else fails, it’ll use just plain
theme_links() from theme_links() from
/include/theme.inc.

The upshot of all this is that we can fix the vertical bars issue fairly
easily. We just have to:

1. Copy theme_links() from theme.inc;
2. Paste it into template.php and re-name it

phptemplate_links();
3. Re-write the function’s code to do whatever we want.
4. Here is my phptemplate_links() function:

function phptemplate_links($links){
 // $links has to be an array.
 if (!is_array($links)) { return ''; }

 // $links has to have at least one link in it.
 if (count($links) == 0){ return ''; }

 // If there’s only one link, return it unaltered.
 if (count($links) == 1){ return $links[0]; }

 $output = '';

 for($i = 0; $i < count($links); $i++){
 // For the very first link, chop off the "<a" and
replace it with '<a class="first"'.
 // This is so we can easily apply a different style to
the first link to prevent it
 // from having a vertical divider at the left.
 if($i == 0){
 $output .= '<a class="first"'.substr($links[0], 2);
 } else { $output .= $links[$i]; }
 }

 $output .= '';

 return $output;
}

It outputs code like this:

delete
edit
reply

Then we add some CSS to the theme’s stylesheet to make it look as
though there’s a vertical bar separating the links.

/* Give the links padding on the left and right, and a
black line background at the left. */
.link_list a {

padding-right: 0.2em;
padding-left: 0.4em;
background: transparent

url("/themes/Link_List_Line.png") top left repeat-y;
}

/* Cancel the left padding and the background on the first
link in the list. */

.link_list a.first {
padding-left: 0;
background: transparent;

}
The file Link_List_Line.png is just a single black pixel, which
gets repeated vertically down the left edge of the link. Thus, a sighted
user gets the visual cue separating the links; but screen readers are
oblivious to background images, and so they just read off the links.
There—problem solved.

The bulk of my modifications to the Drupal output take exactly this
form—I’ve identified the themeable functions, copied them, renamed
them to phptemplate_whatever(), and modified them to
output more accessible code.

Centralization
But there’s a problem with this scenario. In the example above, I’ve
put the override function phptemplate_links() into one
theme’s template.php file, and modified that theme’s style sheet
to give format the HTML nicely. That’s great as far as it goes—but
the CWRL has about 47 themes. The same code will work in all of
them, but we have to paste it into all 47 copies of template.php
and style.css, which is a pain because it takes ages to finish and
it’s completely tedious. Furthermore, we’ll have to do it all over again
if we ever decide to change the code. Yick.

Fortunately, we can centralize everything for easy maintenance.

Centralizing the Theme Override Functions
Ordinarily, template.php holds nothing but functions needed
for the theme it’s part of; but it’s fully capable of containing and
executing any PHP statement. The one we’re interested in here is the
include() function. This lets us “include” an external file as if it
were part of template.php. To that end, I created a file called
/themes/universal-overrides.php. This contains all the
override functions I’ve written. Then I added an include statement to
each template.php:

include('/usr/local/www/data-dist/themes/universal-
overrides.php');

This needs to be the first line in the template.php file. Also, you
cannot use a relative path in this statement, due to security limitations
on the server. It must be the complete path name. When those two
conditions are met, the universal-overrides.php file will
be included when Drupal opens any particular template.php,
and the override functions will be available to the theme.

This way, if we decide to alter an override function for some reason,
we can edit universal-overrides.php, upload the new
version, and the changes will instantaneously take effect for all 47
themes.

Centralizing the Theme Override CSS
We can accomplish much the same thing for the CSS in our example,
though using a somewhat different technique. To do so, I first put
the CSS into a file called /themes/accessibility.css.

The key to including accessibility.css into every file is the
Drupal function _phptemplate_variables()(Pro Drupal
Development, p. 126), which lets us modify the variables that Drupal is
working with before they are ever sent to the theming engine for final
rendering. Here is a simplified version of the
_phptemplate_variables() function from
universal-overrides.php:

function _phptemplate_variables($hook, $vars = array()){
switch($hook){

“// Stuff to do when we’re loading a whole page.”
case "page":

“// Add a link to the accessibility style
sheet.”

$vars["head"] .= '<style type="text/css"
media="all">@import "/themes/accessibility.css";</style>';

break;
}

return $vars;
}

Lets look at the two arguments to this function. The first, $hook,
contains a string identifying where Drupal is in the process of
building the page. There are several possible values for $hook, but
the only one we care about at the moment is “page”, which lets us
“hook into” the page-building process at the highest level.

The other argument, $vars, is an array containing all of the
possible variables that will be available to a template file. So, for
example, at this stage in the process we have a variable called
$vars["head"], which contains all of the HTML for linking in
Drupal’s default style sheets and javascript files. By the time we reach
page.tpl.php, that gets turned into just plain $head. So all we
need to do is append a link to our accessibility.css file to

$vars[“head”], and our accessibility styles will automatically
be included in every theme.

At this point, we have a working system for overriding themable
functions centrally, and all that needs to be done is identify themeable
functions that need customization for accessibility and do with them
as we will.

Creating New Template Variables
But we can take it further than that; we can also define custom
variables for use in our templates. Doing so requires two things:

1. A new template file.
2. A callback function.

Let’s look at an example template file. Here is the contents of
themes/cwrl_footer.tpl.php:

<p>Computer Writing and Research Lab, The University of Texas at Austin

<a href="<?php print $base_path; ?>" accesskey="1">Main home
page for <?php print $site_name; ?>.
<a href="http://www.cwrl.utexas.edu/accesskeys"
accesskey="2">Access key details.
Computer
Writing and Resarch Lab main site.
University of
Texas main site.
<a href="http://www.utexas.edu/directory/"
accesskey="5">University of Texas Student, Faculty, and Staff directory.

<a class="first"
href="http://www.utexas.edu/web/guidelines/accessibility.ht
ml" accesskey="6">Accessibility
<a
href="http://www.adobe.com/products/acrobat/readstep2.html"
accesskey="7">Adobe Acrobat Reader
<a href="http://www.macromedia.com/software/flashplayer/"
accesskey="8">Flash Player
<a href="http://www.apple.com/quicktime/download/win.html"
accesskey="9">QuickTime Player
Real Player

</p>

This is plain HTML, with the exception of the first link, which uses
PHP to print out the path to the main page of the current site. (Note
that this code block is slightly simplified—I have omitted the title
attributes to prevent the lines from getting too long.) You need to
have a copy of cwrl_footer.tpl.php in each theme directory.
Since the file is identical, however, we can use symbolic links instead.
Symbolic links act like files, but actually point to a file in some other
place. So we put a copy of cwrl_footer.tpl.php in the
themes directory, and then create symbolic links in each theme
directory. Symbolic links for this file can be created by entering the
following commands on the server’s command line, assuming the
path to the themes directory is /usr/local/www/data-
dist/themes:

cd /usr/local/www/data-dist/themes
ln -s /usr/local/www/data-dist/themes/cwrl_footer.tpl.php
Theme_Directory_Goes_Here/cwrl_footer.tpl.php

This creates a symbolic link in the specified theme directory. Note
that you cannot use relative paths in these symbolic links; for security
reasons, Drupal will refuse to load any symbolic link which uses a
relative path like “../cwrl_footer.tpl.php”. You must
specify the complete path. Also, this command only creates one link
at a time. In order to create symbolic links in every theme directory at
once, use this command:

cd /usr/local/www/data-dist/themes
find . -type d -maxdepth 1 -exec ln -s /usr/local/www/data-
dist/themes/cwrl_footer.tpl.php {}/cwrl_footer.tpl.php \;

Now for the callback function, defined in universal-
overrides.php:

function phptemplate_cwrl_footer($vars = array()){
return _phptemplate_callback("cwrl_footer", $vars);

}

The _phptemplate_callback() function here looks for a
file called “cwrl_footer.tpl.php” in the directory of the
currently selected theme, loads it, and returns the result for
assignment to a variable or printing. In our case, it will find the
symbolic link in the theme directory, follow the link to the real file,
and load it. By editing that one copy of cwrl_footer.tpl.php,

we can apply changes instantly to every site regardless of which
theme it’s using. At our option, we can also pass it an array of
variables. The items in the array will be turned into normal variables
and made available inside the template file.

Next, we need to add a line to
_phptemplate_variables():

function _phptemplate_variables($hook, $vars = array()){
switch($hook){

// Stuff to do when we’re loading a whole page.
case "page":

// Add a link to the accessibility style
sheet.

$vars["head"] .= '<style type="text/css"
media="all">@import "/themes/accessibility.css";</style>';

// Load the CWRL footer template.
$vars["cwrl_footer"] = phptemplate_cwrl_footer($vars);

break;
}

return $vars;
}

Passing the $vars variable to
phptemplate_cwrl_footer() gives us access to all the
default page.tpl.php variables in cwrl_footer.tpl.php.
And adding the results of phptemplate_cwrl_footer()
to a new item in the $vars array means that we’ll have our CWRL
footer defined in every page.tpl.php.

The last step is to add the following line to the footer of each
page.tpl.php:

<?php print $cwrl_footer; ?>

The actual _phptemplate_variables() function in
universal-overrides.php is considerably longer than this,
but each of the things it does follows the same basic pattern as the
cases I’ve described here.

Theming sub-sites
It is possible to use separate themes for sub-sites within a Drupal site.
I am not using this technique extensively, but I have used it once.
The theme “Clementine” uses a fixed-width layout that makes it
difficult to use the administrative pages properly. The tables in the
administrative areas are too wide for the fixed-width column, and so
portions of them get obscured under the navigation blocks. To
remedy this, I’ve created a separate template file called page-
admin.tpl.php. It can be found in themes/clementine.
The only difference between the page.tpl.php and page-
admin.tpl.php for clementine is that the latter specifies a wider
column. In order to make clementine use this template file for the
admin areas, we need to modify our
_phptemplate_variables() function:

function _phptemplate_variables($hook, $vars = array()){
switch($hook){

// Stuff to do when we’re loading a whole page.
case "page":

// Get the current theme.
global $theme_key;

// Add a link to the accessibility style
sheet.

$vars["head"] .= '<style type="text/css"
media="all">@import "/themes/accessibility.css";</style>';

// Load the CWRL footer template.
$vars["cwrl_footer"] = phptemplate_cwrl_footer($vars);

switch($theme_key){

case "clementine":
// Clementine’s fixed width is too

narrow for the administration pages.
// Make it use page-admin.tpl.php

instead for more width on admin pages.
if((arg(0) == "admin")){

$vars['template_file'] = 'page-admin'; }
break;

}
break;

}

return $vars;
}

Switching according to $theme_key lets us pick whichever
theme is currently being used and undertake theme-specific
alterations to the $vars array. We test to see if the first argument
from the Drupal query string is “admin”, and if so, then we specify
that $vars[‘template_file’] should point at the
template file beginning with “page-admin” instead of just plain
“page”.

Modifications to modules

Very few of my modifications required me to alter module code
directly, which his good, because these modifications will have to be
re-applied to any later version of the module which comes out. If the
modules change significantly, the modifications may need to be
rewritten. I’ve made direct modifications to only three modules:

1. Filter
2. Organic Groups
3. Signup

To illustrate the changes, let’s examine the changes I made to Filter.

The unmodified filter.module contains a function,
filter_filter_tips() that outputs a table of basic
HTML tags. The table is assembled as a collection of header
information, stored in the variable $header, and rows, stored in
$rows. Then the table is made like this:

$output .= theme('table', $header, $rows);

The theme() function here works exactly as described above.
Note that this lacks a summary attribute. In order to add a summary
attribute, we need to rewrite the line like this:

$output .= theme('table', $header, $rows, array("summary" => t("A
list of basic HTML tags.")));

Ordinarily, it would be simple enough to copy the function to
universal-overrides.php, rename it, and edit away. But
unfortunately, this table is created inside a function which is not
themeable. In order to be themeable, a function MUST begin with

“theme_”, which filter_filter_tips() does not. We
could theoretically override theme_table(), the function that
theme() calls here. But theme() doesn’t know what the
purpose of the table is. In order to override it at this level, our
modified theme() function would have to parse the variables it
was passed looking for identifying information and then pick the text
for a summary attribute based on what it finds there. That approach
is awkward, and likely to fail in the case of fairly minor changes to the
content of the variables. Therefore, the only sane way to make this
modification is by editing filter.module directly.

Avoid doing this when possible, because it will need to be re-done
every time the function changes (as, for example, it might when we
upgrade to a newer version of Drupal).

Conclusion

You should now have a solid working overview of the Drupal
theming system and how I went about using it to improve Drupal’s
accessibility. The exact changes I’ve made will be summarized in the
Appendix. But the best way to proceed is to open universal-
overrides.php and study it—I’ve left copious comments in place for
each change.

Appendix

List of modified and new variables in the CWRL’s Drupal installation
All of these are available in any page.tpl.php:

$logged_in
TRUE if the user is logged in, otherwise false

$admin
TRUE if the user is an administrator, otherwise false

$cwrl_footer
The CWRL footer, loaded from cwrl_footer.tpl.php

$access_links
The access links, loaded from access_links.tpl.php

$search_box
The search box, loaded from search-box.tpl.php. Note that
this is a per-theme template file, not a centralized one, because some
themes need a slightly different version than others in order to work
properly.

$header_target

The target for the header, #HeaderAccessibility

$content_target
The target for the main content, #Content

Note that this is not called #ContentAccessibility because
there’s a good chance that someone may try to guess the URL. Some
of the themes had markup tagged as id="content", which causes
validation errors when this is used; those themes have been fixed (by
replacing their local #Content with #Main or
#ContentTable or whatever).

$footer_target
The target for the footer, #FooterAccessibility

Sidebar targets
These are automatically loaded into $sidebar_left and
$sidebar_right.

